Interleukin-1 deficiency prolongs ovarian lifespan in mice.
نویسندگان
چکیده
Oocyte endowment dwindles away during prepubertal and adult life until menopause occurs, and apoptosis has been identified as a central mechanism responsible for oocyte elimination. A few recent reports suggest that uncontrolled inflammation may adversely affect ovarian reserve. We tested the possible role of the proinflammatory cytokine IL-1 in the age-related exhaustion of ovarian reserve using IL-1α and IL-1β-KO mice. IL-1α-KO mice showed a substantially higher pregnancy rate and litter size compared with WT mice at advanced age. The number of secondary and antral follicles was significantly higher in 2.5-mo-old IL-1α-KO ovaries compared with WT ovaries. Serum anti-Müllerian hormone, a putative marker of ovarian reserve, was markedly higher in IL-1α-KO mice from 2.5 mo onward, along with a greater ovarian response to gonadotropins. IL-1β-KO mice displayed a comparable but more subtle prolongation of ovarian lifespan compared with IL-1α-KO mice. The protein and mRNA of both IL-1α and IL-1β mice were localized within the developing follicles (oocytes and granulosa cells), and their ovarian mRNA levels increased with age. Molecular analysis revealed decreased apoptotic signaling [higher B-cell lymphoma 2 (BCL-2) and lower BCL-2-associated X protein levels], along with a marked attenuation in the expression of genes coding for the proinflammatory cytokines IL-1β, IL-6, and TNF-α in ovaries of IL-1α-KO mice compared with WT mice. Taken together, IL-1 emerges as an important participant in the age-related exhaustion of ovarian reserve in mice, possibly by enhancing the expression of inflammatory genes and promoting apoptotic pathways.
منابع مشابه
Hepatic S6K1 Partially Regulates Lifespan of Mice with Mitochondrial Complex I Deficiency
The inactivation of ribosomal protein S6 kinase 1 (S6K1) recapitulates aspects of caloric restriction and mTORC1 inhibition to achieve prolonged longevity in invertebrate and mouse models. In addition to delaying normative aging, inhibition of mTORC1 extends the shortened lifespan of yeast, fly, and mouse models with severe mitochondrial disease. Here we tested whether disruption of S6K1 can re...
متن کاملSIRT1 activator (SRT1720) improves the follicle reserve and prolongs the ovarian lifespan of diet-induced obesity in female mice via activating SIRT1 and suppressing mTOR signaling
BACKGROUND The prevalence of obesity is increasing worldwide and significantly affects fertility and reproduction in both men and women. Our recent study has shown that excess body fat accelerates ovarian follicle development and follicle loss in rats. The aim of the present study is to explore the effect of SIRT1 activator SRT1720 on the reserve of ovarian follicle pool and ovarian lifespan of...
متن کاملIncreased B-lymphopoiesis by interleukin 7 induces bone loss in mice with intact ovarian function: similarity to estrogen deficiency.
Estrogen deficiency caused by ovariectomy (OVX) results in a marked bone loss due to stimulated bone resorption by osteoclasts. During our investigations of the pathogenesis of bone loss in estrogen deficiency, we found that OVX selectively stimulates B-lymphopoiesis which results in marked accumulation of B220-positive pre-B cells in mouse bone marrow. To examine the possible correlation betwe...
متن کاملCalorie restriction inhibits ovarian follicle development and follicle loss through activating SIRT1 signaling in mice
BACKGROUND Silent information regulator 2 related enzyme 1 (SIRT1) is one of the key factors in the mechanism of calorie restriction (CR) extending lifespan of animals. The aim of the study is to investigate if CR prolongs ovarian lifespan in mice through activating SIRT1 signaling. METHODS In the present study, 21 female C57BL/6 mice were divided into three groups: the control (n = 7), CR (n...
متن کاملAbsence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice.
The menopausal transition in human females, which is driven by a loss of cyclic ovarian function, occurs around age 50 and is thought to underlie the emergence of an array of health problems in aging women. Although mice do not undergo a true menopause, female mice exhibit ovarian failure long before death because of chronological age and subsequently develop many of the same age-associated hea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 34 شماره
صفحات -
تاریخ انتشار 2014